
Towards a small, efficient Linux hardware
inventory system

Martin Schwenke
IBM OzLabs Linux Technology Center

<martins@au.ibm.com> · <martin@meltin.net>

Abstract

lsvpd is a serviceability package written for Linux running on IBM pSeries r© systems,
although it also runs on other architectures with at least a Linux r© 2.6 kernel. Devel-
oped as a look-alike for the AIX r© tool of the same name, lsvpd includes a hardware
inventory database, scanning components that populate the database, and a variety of
query tools. The focus is on listing Vital Product Data (VPD) for components as part
of hardware service calls - in such cases knowledge of model numbers, engineering ver-
sions of circuit boards, and microcode versions can be critical in determining the the
correct fix for a problem. Use of a database, rather than querying hardware directly
is an important requirement since it may not be possible to get required information
from a faulty component.

Certain problems with the current version of lsvpd can’t be reliably fixed without
proper hotplug support. The current version of lsvpd for Linux is a combination of
bash scripts and “helper programs” written in C. Therefore, due to the large number
of processes that are spawned, it is unlikely to cope well with a large number of
hotplug events in a short amount of time. A decision has been made to “migrate” the
current implementation to C - the plan is to make the helper programs incrementally
larger so they eventually replace the entire bash implementation. One feature of the
current bash implementation is run-time loadable modules that can provide additional
functionality depending on available system features, such as sysfs. Implementing this
as elegantly in C will be interesting.

This paper discusses the above in a number of contexts, including:

• The need for a small, efficient hardware inventory system for Linux. Other
systems, such as OpenPegasus, also do hardware inventory, and could use a
lower-level implementation if it were available and suitable.

• The use of a hardware inventory system as part of a persistent device naming
system. This would involve generalising something like the scsi id program, but
would use general VPD values for many different types of devices. A prototype
has been demonstrated using the current implementation of lsvpd.

• The level of success migrating the current implementation to C. Some part of
the migration will be complete by the time the paper is due.

• The trend towards writing system utilities in scripting languages. As a service-
ability tool, lsvpd may be required to help diagnose problems when only a partial
system is available - there may be no /usr filesystem.

1



2 1 Introduction

1 Introduction

lsvpd is a serviceability package for Linux that implements a hardware inventory
system. It is a (partial) reimplementation of the AIX lsvpd command and some
other related commands. The target platform for Linux lsvpd is IBM pSeries
servers, but it also runs on other Linux systems running a 2.6 kernel.

There are a number of reasons why hardware inventory systems are useful,
including:

Hardware detection: Traditionally, Linux has used hardware detection sys-
tems to facilitate automatic selection of device driver kernel modules.
Examples include Red Hat’s kudzu1 and SUSE’S hwinfo.

System management: System management tools, such as WBEM 2 (Web-
Based Enterprise Management), require a reasonable knowledge of the
system’s hardware to be able to perform management tasks. In partic-
ular, WBEM includes some explicit hardware inventory elements in its
core schema.

Serviceability: To be able to adequately service a system it is important to
know details of the hardware that comprises it. For serviceability, such
details might include a part number, serial number or physical location.
It is also preferable to have information stored in a database, instead of
needing to query hardware at run-time, since it may not be possible to
retrieve information from a faulty component.

This paper focuses on hardware inventory systems for the last category. While
a system that supports serviceability requirements may be able to help support
hardware detection and system management, it may have extra requirements
not needed for those two categories. For example, the author spent some time
looking at OpenPegasus3 (a WBEM system), trying to figure out if it handles
hardware inventory. There were no clear conclusions: there’s over 33MB of
source code with no obvious hardware inventory component(s), suggesting there
might be a bit too much infrastructure to build something that will fit into an
initramfs (see Section 1.1)! However, a future version of lsvpd will offer a library
with a C API to allow access to its database so that higher-level tools can be
built on top of lsvpd.

1.1 Small Is Good

One of the requirements of lsvpd is for it to be as small as possible. Ideally,
the system should be able to run from an initramfs, or other limited boot-time
environment. The current version has an installed size of less than 750KB.4

However, the current system is written in a mixture of bash scripts and C
helper programs so it doesn’t scale well on large systems, particularly those that

1 http://rhlinux.redhat.com/kudzu/
2 http://www.dmtf.org/standards/wbem
3 http://openpegasus.org/
4 However, lsvpd may require significantly more filesystem space for its database.



1.2 Digging For Details 3

may have a lot of hotplug activity. In fact, due to this, only limited hotplug
capabilities have been written so far, and even these remain unused.

lsvpd is currently being rewritten in C, although possibly only for Linux 2.6.
This will make it small and fast, at least compared to the current version.
Comments on the progress of the rewrite can be found in Section 3.

An earlier, more primitive version was written in Perl, but sophisticated script-
ing languages such as Perl are rarely found in initramfs or similar environments.
More about that in Section 4.

1.2 Digging For Details

Hardware is varied and complex. lsvpd uses a wide variety of techniques to
find out detailed information about different types of hardware. Luckily, most
adapters conform to one of the PCI standards (for example [4]), which de-
scribe some standard ways of retrieving VPD from PCI adapters. SCSI devices
tend to have a lot of information available via SCSI inquiry commands, and
the structure of this information tends to be fairly uniform within the prod-
uct lines of particular vendors, with some information available under Linux
2.6 via sysfs. SCSI inquiries are implemented in Linux via the generic SCSI
ioctl(2)interface. IDE devices don’t have much information in sysfs — procfs
still tends to be used — but the HDIO GET IDENTITY ioctl(2) manages to pro-
vide some useful information. On IBM pSeries systems, and others that use
Open Firmware, the device-tree is also a useful source of information.

However, from there it gets murky. Different device drivers support ad hoc meth-
ods of exposing various tidbits of information. A flexible system for providing
hooks (or even ‘plug-ins’?) needs to be provided for retrieving this information
in the most general possible way. Methods that are entirely driver-specific are
best avoided, since they will almost certainly become difficult to maintain.

1.3 Example Output

*DS PCI-X Dual Channel Ultra320 SCSI RAID Adapter

*AX scsi3

*PN 97P3960

*FN 97P3960

*SN YL10C3306827

*MN 000C

*EC 0

*RM 0309002d

*Z0 5703

*Z1 1

*YL U7879.001.11C543F-P1-C5-T1

Figure 1: An example of VPD

An excerpt from an example of output from the lsvpd command is shown in
Figure 1. Some of the important fields are summarised below:



4 1 Introduction

DS: Description. Usually displayed as the first item.

AX: Operating system name. Actually ‘AIX name’ !

PN: Part Number. Knowing the history of a part may help to explain certain
types of faults.

FN: FRU (Field Replaceable Unit) number. This is a generalisation of a
model number, representing a family of models that are interchangeable.
For example, an old model may no longer be available, but there may
be a newer model with the same FRU number that can be used as a
replacement.

SN: Serial Number. It is useful to confirm the serial number of a component
before removing it, when possible.

RM: Alterable ROM Level. In this case, the firmware version of the card,
which may need to be updated.

YL: Physical Location. All fields beginning with ‘Y’ are system specific fields
and, in this case, this field is particular to IBM pSeries systems. This
example can be read (from right-to-left) as port 1, on card connector 5,
on planar (or backplane) 1, in unit U7879.001.11C543F (which may be
in a separate drawer or rack to the main part of the system).

Figure 2 shows an example, of the same VPD as it is listed by the more user
friendly lscfg command. This type of output is more likely to be used by field
engineers, whereas output from lsvpd is more likely to be used by upstream
serviceability applications.

scsi3 U7879.001.11C543F-P1-C5-T1

PCI-X Dual Channel Ultra320 SCSI RAID

Adapter

Part Number.................97P3960

FRU Number..................97P3960

Serial Number...............YL10C3306827

Manufacture ID..............000C

EC Level....................0

Alterable ROM Level.........0309002d

Device Specific.(Z0)........5703

Device Specific.(Z1)........1

Device Specific.(YL)........U7879.001.11C543F-P1-C5-T1

Figure 2: An example of VPD, as listed by the lscfg command

1.4 Other Information

Various aspects of lsvpd for Linux have been previously discussed in [1, 2, 3].



5

2 VPD-based Persistent Device Naming

The device naming system udev5 can be used with Linux 2.6 to provide a con-
figurable, dynamic /dev directory. Normal udev rules can only make use of sysfs
properties in the naming process. Although it would be possible to put all VPD
in sysfs by adding VPD retrieval code to the kernel, this would be inflexible and
would amount to kernel bloat. However, due to good design, udev has a call-out
facility - an arbitrary program can be executed by a device naming rule and
can, therefore, use arbitrary information to assist with name generation.

One such existing program is scsi id. This program attempts to find either
a world wide name or a serial number in a device’s SCSI inquiry data and, if
possible, prints a unique identifier for the device. The unique identifier can then
be used in a udev rule to identify the device, allowing a preconfigured name to
be assigned. Further, after all desired SCSI devices have been configured, it
is possible to use a simple script that invokes scsi id on each SCSI device to
generate rules that assign a simple, sequentially assigned name to each device.
This provides for a simple form of persistent SCSI device naming.

This approach can be extended to arbitrary devices using a hardware inventory
system like lsvpd and has been previously described in [3]. Here’s a suggested
sequence of hotplug events that could occur when a device is added:

1. lsvpd-hotplug retrieves VPD for the device and stores it in lsvpd’s database.

2. udev calls out to lsvpd-namedev, which uses its own rules to determine
whether particular combinations of VPD elements for the device have a
corresponding known device name. If so, that name is returned. If not,
a new name is generated from a sequence and the new name is stored in
lsvpd-namedev’s naming database.

3. lsvpd-hotplug-name adds the name to the VPD entry in lsvpd’s database.

In such a system, the main VPD database is dynamic and does not need to
be remembered between system boots for naming purposes. Although it is still
useful to maintain old copies of the database for serviceability reasons, device
name management is separated in an additional layer of logic.

When lsvpd is reimplemented to be smaller and more efficient than the cur-
rent version (see Section 3), a sample device naming system will eventually be
included.

3 Rewriting lsvpd

As mentioned in Section 1.1, the current version of lsvpd is written in bash.
It uses helper programs to do things that bash can’t do, such as performing
SCSI inquiries and parsing binary data. Some of these helpers are part of the
lsvpd packages and others are from third party packages (such as sg3 utils). The
current system functions quite well. A main script update-lsvpd-db is used to
collect VPD at boot time. This script may also be run at any time by the user.

5 http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html



6 3 Rewriting lsvpd

Although many steps have been taken to minimise the number of unnecessary
sub-processes created by update-lsvpd-db, it is still too inefficient for use in a
busy hotplug environment. Therefore, the package is being rewritten in C. The
goal is to have a database initialisation program and hotplug programs that do
all of their work efficiently, each within a single process.

The following sections discuss various issues that have arisen during the early
stages of the rewrite. Note that although the discussion generally refers to lsvpd,
most attention is being paid to reimplementing update-lsvpd-db rather than
the query programs.

3.1 Dynamically Configurable Modules

The bash implementation of lsvpd uses several directories of ‘modules’ that are
loaded at run-time, depending on a condition that is checked at the top of the
module. This allows conditional code execution, including setting variables and
defining functions, which supports a form of run-time configuration. Thus, the
current system can determine available system features at run-time, rather than
at packaging or installation time, perhaps allowing improved operation when a
system is upgraded. For example, on IBM pSeries systems lsvpd performs a lot
better when sysfs is present, so if a system is upgraded from Linux 2.4 to 2.6
lsvpd will automatically become more efficient.

This is implemented in bash in a very obvious way. All of the modules in a
configuration directory are sourced, and each checks some initial condition, like
the example in Figure 3.

[ -n "$sysfs_dir" ] || return 0

list_devices_functions="sysfs_list_devices"

sysfs_list_devices ()
{

...
}

Figure 3: An example of dynamic configuration in bash

This initially looked like it would be quite difficult to do in C. However,after
learning about the possibility of using ELF sections, which can be manipulated
via some GCC extensions and used for this sort of initialisation, things looked
much more straightforward. Each module defines an initialisation function,
which. by convention. is called init(), and a pointer to this function is added
to a special section using a macro called INIT. An example can be seen in
Figure 4. As will be seen in Section 3.2, init() functions can also support
function overriding in a fairly obvious way.

The INIT macro, which looks a bit like ‘line noise’, is shown in Figure 5. The
main job of the INIT macro is to place a function pointer into the init call



3.1 Dynamically Configurable Modules 7

static void
init(void)
{

if (NULL != lsvpd_sysfs_dir) {
device_listing_functions_clear();
...

}
}

INIT(init);

Figure 4: An example of dynamic configuration in C

ELF section. This is an ad hoc section, so a function similar to call inits
must be called at the beginning of main() to call each function pointer in the
section.

#define INIT(fn) static initcall_t __initcall_##fn \
__attribute__((__unused__)) \
__attribute__((__section__("init_call"))) = &fn

static inline void call_inits (void)
{

extern initcall_t __start_init_call[], __stop_init_call[];
initcall_t *p;
for (p = __start_init_call; p < __stop_init_call; p++)

(*p)();
}

Figure 5: INIT macro and calling code in C

One nice feature of this method is that the linker (ld) combines the sections
in link order, so the order that object files are passed to the linker determines
the order the initialisation functions are called in. That is, no explicit code is
required to ensure the initialisation functions are called in the correct order —
the logic appears in only one place: the Makefile.

Two other methods, both involving ELF sections were examined with a view to
simplifying things.

• Use of the .init array section, where function pointers in the section
are automatically called before main(). This would mean no CALL INITS
function would be needed. However, handling of the .init array section
appears to be a new feature, requiring a relatively new version of libc.
Therefore, this is not (yet) portable enough.

• Use of the constructor attribute to mark functions that should be called
before main(). This seems to be portable, but a simple experiment showed
the call order is not necessarily well defined.



8 3 Rewriting lsvpd

3.2 Function Overriding and Clever Tricks

Overriding functions in bash is trivial: simply define a new function with the
same name as an old one. In C this is more difficult, but the solution is still
reasonably obvious: call functions via pointers, and set the pointers in the
initialisation code. This works well.

To cut down the number of obvious conditional statements in the bash imple-
mentation, a limited form of object-orientation, termed function multiplexing,
has been implemented. It works like this. . .

A SCSI device is added, so the following function call occurs:

device_add scsi 0:0:8:0

If device add scsi is a function, it is called with the single argument 0:0:8:0.
Otherwise, if device add DEFAULT is a function, it is called with both of the
original arguments. Otherwise, no function is called. This is implemented using
the code shown in Figure 6.

multiplex ()
{

local func="$1" ; shift
local type="$1" ; shift

local f="${func}_${type}"
local t=$(type -t "$f")
if [ "$t" = "function" ] ; then

"$f" "$@"
else

f="${func}_DEFAULT"
local t=$(type -t "$f")
if [ "$t" = "function" ] ; then

"$f" "$type" "$@"
else

: "No function defined for \"${func}\" \"${type}\""
fi

fi
}

make_multiplexed ()
{

eval "$1 () { multiplex $1 \"\$@\" ; }"
}

make_multiplexed device_add

Figure 6: Function multiplexing in bash



3.3 Infrastructure 9

This is somewhat trickier in C. What’s more, in bash it is possible for a module
to undefine one or more specific functions, such as device add scsi, and pro-
vide a more general definition, such as device add DEFAULT, to replace it. An
initial thought was to use an array of functions to implement each multiplexed
function. However, this would have meant that some decisions, such as the size
of the array and allocation of array indices, would need to be centralised. Also,
to make things type-safe (unlike the bash implementation) macros would need
to be used in unnatural and ugly ways.

To simplify the C implementation a decision was made to group functions to
make the implementation more manageable. For example, functions relating
to devices would be grouped, allowing the relevant pointers to be put into a
structure. The structure also includes an identifier indicating the type of func-
tions defined there — for example, SCSI. These type identifiers are currently
implemented as strings, since this is quite intuitive, the strings are naturally
unique and comparisons are quite cheap (since failure to match usually occurs
at the first character). However, if this turns out to be a source of inefficiency,
pointers to the identifier strings, rather than the strings themselves, could be
compared. This would be a relatively small change.

The only real negative aspect of this implementation is that the top-level mul-
tiplexed function actually needs to be explicitly defined. This could probably
be done with macros, but it wouldn’t be pretty.

Examples of the C implementation are not given here. To be useful they would
take up too much space!

3.3 Infrastructure

So, how well is the reimplementation proceeding? OK, but more slowly than
first planned. The main problem is infrastructure, and there are two categories
of infrastructure of interest: language infrastructure and project infrastructure.

C doesn’t provide much infrastructure, especially when compared to sophisti-
cated scripting languages. There’s libc, but it provides minimal string handling
and requires more attention be paid to memory management than to solving the
problem you’re working on. There are also ‘higher level’ libraries like glib, but
they tend to be quite idiomatic — you tend to do some weird stuff to get the job
done. To write good quality C code you need to bring some good infrastructure
with you. . . or you need to write it.

Project infrastructure is important too. In the bash version of lsvpd, many new
features can be added in minutes. This is because the project has built up a lot
of domain-specific infrastructure. To get started on the C version, quite a lot of
this infrastructure needs to be duplicated.

Even so, the original reimplementation plan was to incrementally increase the
number and size of C helper programs, gradually reduce the amount of bash
code and then magically combine the C code into one amorphous lump. This
turned out to be quite a näıve plan. The main problem is that many of the code
paths call functions that have alternate implementations based on orthogonal
conditions. For example, the multiplexed device add functions call multiplexed



10 4 Scripting System Tools

device add hook functions. The implementation of device add depends on
the type of device being added, but the implementation of device add hook
depends on whether /proc/device-tree and sysfs exist. Therefore, to imple-
ment IDE device handling, general code needs to be written relating to devices,
sysfs and device-trees — unless one wishes to contemplate bash code executing
C code executing bash code — and that’s most of the device-handling code. So,
the plan became to (simply!) replace all the device handling code. However,
this also requires a little bit of adapter handling code, since devices are attached
to adapters.

The reimplementation is proceeding, but it is happening slower than originally
planned. . .

3.3.1 Linux 2.6 Only?

One way of speeding up the reimplementation process is to only implement the
parts relevant to Linux 2.6. Although this is most of the system, it does save
rewriting a non-trivial amount of code. Supporting Linux 2.4 systems would
simply be a matter of executing (say) update-lsvpd-db24 on systems where
sysfs is not being used. This also has the advantage of using existing, working
code rather than introducing new bugs. However, the obvious disadvantage is
that, in the future, some bugs will need to be fixed in two places.

The obvious compromise is to initially reimplement the parts of the system to
support Linux 2.6 and then reconsider reimplementing support for Linux 2.4.

4 Scripting System Tools

There is a strong trend towards writing system tools in scripting languages, such
Perl and Python. This might not be a good idea in all cases where it is being
done.

The original Linux implementation of lsvpd was written in Perl. This worked
well, since Perl is feature-rich enough to do everything required without resort-
ing to external programs. However, given the desire to be able to use lsvpd in a
limited environment, such as an initramfs, a sophisticated scripting environment
like Perl would not always be available. Also, anyone wishing to build higher
level tools on lsvpd would inherit the requirement for Perl. In general, using a
modern scripting language introduces non-trivial run-time dependencies. Com-
pilers for these scripting languages exist, but aren’t mature enough to be used
for real systems. The choice of bash has served lsvpd reasonably well. However,
even though it is the default Linux shell, bash is not likely to be available in an
initramfs. However, the choice of bash has also introduced the need for helper
programs written in C. Soon, ongoing lsvpd development will abandon the use
of scripting languages altogether.



11

5 Conclusions

The Linux lsvpd serviceability package has been through a few major changes. It
is currently a useful tool, but could be better. Therefore, it is being rewritten to
be more efficient and to have less run-time dependencies, although the rewrite is
proceeding more slowly than first envisioned. The new, improved lsvpd should
be good enough to support persistent device naming on large systems. Scripting
languages should not be used to implement systems like lsvpd, since this limits
their use in certain contexts.

Thanks. . .

The IBM OzLabs team — an amazing group of people to work with — and a
host of other IBMers.

Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM. The Linux lsvpd package is distributed under the GNU General
Public License. IBM, pSeries, and AIX are trademarks or registered trademarks
of International Business Machines Corporation in the United States and/or
other countries. Linux is a registered trademark of Linus Torvalds. Other
company, product, and service names may be trademarks or service marks of
others.

References

[1] Martin Schwenke.
My computer is bigger than yours!
Linux.conf.au 2003 <http://linux.org.au/conf/2003/>, January 2003.
Paper and slides also available from
<http://meltin.net/people/martin/publications/bigger.html>.

[2] Martin Schwenke.
Linux hardware inventory: Current reality, future possibilities.
AUUG 2003 - Open Standards, Open Source, Open Computing.
<http://auug.org.au/events/2003/auug2003/>, September 2003.
Also available from
<http://meltin.net/people/martin/publications/linuxhwinv.html>.

[3] Martin Schwenke.
Using Vital Product Data For Persistent Device Naming.
AUUG 2004 - Who Are You? <http://auug.org.au/events/2004/auug2004/>.
September 2004. No paper written, but slides are available from:
<http://meltin.net/people/martin/publications/devnamevpd.html>.

[4] PCI Special Interest Group.
PCI Local Bus Specification. Release 2.2.
December 18, 1998.


