
Polythene PAM ain’t what she used to
be. . .

Martin Schwenke
IBM OzLabs Linux Technology Center

<martins@au.ibm.com> · <martin@meltin.net>

Abstract

This paper discusses the author’s recent experiences with Pluggable Authentication

Modules (PAM) under Linux, although most of the discussion applies to other PAM-

enabled operating systems. Attempts to mix users defined in local files with users

defined in an LDAP directory, and implement a defensive system administration policy,

did not entirely succeed. The discussion covers the Name Service Switch (NSS) (and

associated libc functionality), PAM, LDAP and user credentials, and concludes that

some major changes are necessary to provide an authentication and credentials system

that is reliable enough for mission critical systems.

Prelude: Polythene Pam

. . .
She’s the kind of a girl that makes the “News of the World”
Yes, you could say she was attractively built
Yeah, yeah, yeah. . .
— Lennon/McCartney (c© 1969 Northern Songs)

1 Introduction

The Pluggable Authentication Modules (PAM) framework was first suggested
in around 1995 as a way of letting Unix system administrators configure a
range of authentication technologies for a range of services, in a modular way.
PAM was originally implemented on Solaris, though PAM support for Linux
followed shortly afterwards. The original papers about PAM [2, 1] described an
elegant system, which had the desirable feature that services could be considered
orthogonal to authentication technologies.

Prior to this, with the introduction of Solaris 2.0 in the early 1990s, Sun had
introduced another feature called the Name Service Switch (NSS) to support
NIS+ [3]. NSS allows standard Unix user, group, host and other information to
be gathered from arbitrarily specified back-end. The simplest such back-end is
files comprising /etc/passwd, /etc/shadow, /etc/group, /etc/hosts and
other standard Unix system files. Other, more elaborate back-ends, include
LDAP directories, NIS+ maps and SQL databases.

1

2 My Problem: Locally and Remotely Defined Users 2

For the most part PAM and NSS play together well, via the pam unix mod-
ule (described in more detail later), but when they don’t the results can be
confusing, if not totally unsatisfactory. §2 provides an example of an attempt
to implement a particular defensive system administration policy. §3 outlines
how this policy should be implemented, explains why it doesn’t work and dis-
cusses several possible workarounds, each with their own problems. §4 discusses
some underlying problems in and around PAM and some possible solutions are
discussed in §5.

Note this paper is not really about security. It is about being able to imple-
ment system administration policy.

2 My Problem: Locally and Remotely Defined Users

My computer system has two groups of users:

• those defined in /etc/{passwd,shadow,group}; and

• those defined in an LDAP directory.

I want members of both groups to be able to login to my system. I want these
logins to be as reliable as possible.

2.1 The Risk

More generally, my system has two groups of users:

• those defined in local files; and

• those defined on a remote system.

Even more generally, my system has two groups of users:

• those defined in locals file, in a standard, well-known format, that is ac-
cessed by incredibly well tested code; and

• those defined in a third-party application, in a format that I don’t really
understand, accessed via several layers of networking software, from a
remote system that is connected to my system via cables and various
pieces of networking equipment.

If any of the vaguely defined components in the second point fails, the users
defined in my LDAP directory can not login. That’s a risk I have to take —
I’m trading some reliability for the convenience of centralised administration.

2.2 Insurance Policy

Now consider that I need to login as root on my system to resolve an issue
that is making my system unusable. root is a locally defined user and is the
only user that really gives me full control over my system. To login as root
there is no theoretical reason why I need to invoke any of the software or cables
that deal with my remotely defined users. I don’t want to introduce that level
of unnecessary complexity to something as critical as logging in to my root
account — it’s not a risk I’m willing to take.

3 The Obvious Solution 3

Therefore, it is my policy that none of the configuration for remotely defined
users should be considered when I login as a locally defined user. I wish to
configure my system so that, when a locally defined user logs in, the system
exhibits the same behaviour as when there are no remotely defined users.

2.3 Why Am I Telling You This?

The type of configuration provided as an example with the pam ldap package is
shown below.

...
auth sufficient pam_ldap.so
auth required pam_unix.so use_first_pass
account sufficient pam_ldap.so
account required pam_unix.so
session required pam_unix.so
...

This configuration attempts to authenticate users and do account and session
management via LDAP before looking in /etc/{passwd,shadow}. This violates
my policy. Many pam ldap proponents argue that:

• when the LDAP server is available, the pam ldap steps take almost no
time; and

• timeouts on the LDAP client-side can be adjusted so that when the LDAP
server is unavailable the inconvenience can be minimised.

However, a bug in pam ldap or the LDAP client libraries that causes a SIGSEGV
will not allow the calling application to continue to authenticate any users,
including the root user. This is one of the reasons why I have my policy.

3 The Obvious Solution

The obvious solution to the above problem is to put pam unix before pam ldap
and make it sufficient, as follows:

...
auth sufficient pam_unix.so
auth required pam_ldap.so use_first_pass
account sufficient pam_unix.so
account required pam_ldap.so
session required pam_unix.so
...

This solution does not work. Moreover, with this configuration (and in fact any
PAM configuration!) the policy set down in §2.2 is still violated in an extremely
subtle way.

3 The Obvious Solution 4

3.1 It Doesn’t Work?

One piece of the above configuration that doesn’t work is the account manage-
ment. There are two chunks of account management that need to be done:

• Password expiry checks, by looking at the various shadow fields.

• A host access check, done by comparing the hostname of the machine to
the values stored in the host attribute of a user’s LDAP account object.

The first of these is done by both pam unix and pam ldap, which seems to be
an unnecessary duplication of work. This duplication probably stems from the
recommendation that pam ldap be listed first and be marked as sufficient.
The second is done only by pam ldap, which makes sense because pam unix has
no way of knowing about the host attribute.

If pam unix’s account management decides that the given user’s password
has not expired, it returns PAM SUCCESS. Since this step is marked sufficient,
pam ldap’s account management is never run. Therefore, the host access check
is never done.

So, why does pam unix’s account management succeed for LDAP users and
what can be done about it?

3.2 What is a Unix User?

The search for enlightenment begins by asking a very simple question:

What is a Unix user?

The answer to this is quite simple: a Unix user is one that is defined in a back-
end that is available to NSS. For example, to use local files and then LDAP to
lookup user and group information, the relevant entries in /etc/nsswitch.conf
look like this:

passwd: files ldap
group: files ldap
shadow: files ldap

For now, there are two things to note:

• NSS uses system-wide configuration. It can not be configured on a per-
application basis. However, it is possible to customise the behaviour of
certain back-ends.

• When searching for an entry given a user or group name, if the entry is
found in files it is returned, and ldap is never consulted.

3.2.1 How Does PAM Handle Unix Users?

The deceptively simple answer here is: PAM handles Unix users via the pam unix
module, of course! This is true to an extent. pam unix can handle any type of
back-end from which NSS can be configured to retrieve user information that
includes the password field. What’s more, in certain contexts, pam unix thinks
that it can handle any type of back-end from which NSS can be configured

3 The Obvious Solution 5

to retrieve user information. That’s quite a subtle distinction, especially since
pam unix doesn’t check!

The first category includes standard Unix password systems, shadow pass-
word systems and NIS+. It does not include systems that can’t or won’t provide
the password field, perhaps because they don’t want to be quite so trusting.
LDAP is one such system. To check if a username/password pair can be used
to authenticate a user, the client must attempt to bind to an LDAP directory
using the username/password pair. This operation can be performed without
having to trust the client. However, in certain contexts, pam unix thinks it can
handle users in LDAP because passwords aren’t relevant in those contexts.

So, this is why pam unix’s account management succeeds for users defined
in LDAP. pam unix can see all of the relevant information via NSS, so it simply
goes through the motions.

3.3 Workarounds

One possible workaround is to make pam unix be required:

...
account required pam_unix.so
account required pam_ldap.so
...

This means that the pam ldap account management is done for users defined in
LDAP. However, it is also attempted for locally defined users, since PAM has
no reason to stop after pam unix succeeds. There are two problems with this:

• it violates the policy set down in §2.2; and

• locally defined users will be unable to login since pam ldap’s account man-
agement will fail.

3.4 Working Around the Workaround

Luckily, someone thought about this and organised a workaround in pam ldap.
It looks like this:

...
account required pam_unix.so
account required pam_ldap.so ignore_unknown_user
...

This makes pam ldap’s account management return PAM IGNORE if the user is
not defined in LDAP, which keeps PAM happy. What’s more, this can be
done without the module in question having to workaround the ‘unknown user’
situation. Welcome to PAM’s ‘pretty baroque stuff in square brackets’:1

...
account required pam_unix.so
account [default=die success=ok authinfo_unavail=ignore \

user_unknown=ignore] pam_ldap.so
...

1 This is how Andrew Morgan, the Linux PAM maintainer, described this notation on the
PAM mailing list [4] on 1997-08-04, nearly six months before it was actually introduced.

4 Underlying Problems 6

OK, that’s much clearer! What? There’s still a problem? Oh yeah! It still
violates the policy set down in §2.2. . .

3.5 A Working Workaround

Here is a workaround2 that doesn’t violate the policy set down in §2.2 (in any
obvious way):

account requisite pam_unix.so
account sufficient pam_localuser.so
account required pam_ldap.so

pam localuser is a non-standard module3 that doesn’t do any account man-
agement as such, but simply checks if the given user is locally defined via
/etc/passwd. This allows PAM’s account management processing to be short-
circuited before pam ldap is even considered. This appears to meet the desired
policy.

One downside of this approach is that it may require two complete traversals
of /etc/passwd (one by pam unix and one by pam localuser). If /etc/passwd
is large, this might take a long time. Another downside is that it is illogical and
counterintuitive — in the six months between 2001-11 and 2002-04 about half
a dozen people asked4 why their host access check wasn’t working and needed
to be told about the workaround. This doesn’t include those who:

• still don’t know they have a problem;

• didn’t know they had a problem, but implemented the workaround when
they saw it posted;

• knew they had a problem and saw the answer posted before they asked;
or

• trawled through the mailing list archives to find the answer.

4 Underlying Problems

The previous section described an example problem and some workarounds.
This section points out some underlying problems in PAM (or outside of PAM,
as will soon be explained).

4.1 pam unix

NSS is used to make user information available to the operating system and,
therefore, defines the idea of a Unix user. pam unix attempts to build on top

2 This workaround appears to have been initially suggested by Nalin Dahyabhai
<nalin@redhat.com> on the pamldap mailing list [5] on 2001-11-15. His version had pam unix

listed as required. Paul Hilchey <hilchey@ucs.ubc.ca> posted an updated version of the
workaround on 2002-04-05, with pam unix listed as requisite. This is a good improvement,
since you really do expect that step to succeed.

3 pam localuser is distributed with Red Hat Linux, but is not yet part of the Linux PAM
distribution.

4 On pamldap [5] and pam-list [4].

5 Workarounds and Solutions 7

of NSS and tries to cope with all of the users that NSS makes visible. How-
ever, §3 has shown a case where it is necessary to know when a user is locally
defined because the apparent generality provided by pam unix is confusing. It
is interesting that pam unix tries to be all things for all users in a pluggable
authentication system.

One service where pam unix can not be all things to all users is the password
service. pam unix has built-in knowledge that allows it to change standard Unix
passwords, shadow passwords and NIS+ passwords. pam unix was obviously
built with these three back-ends in mind and shows its limitations when mixed
with other back-ends.

4.2 initgroups(3)

Even with careful configuration and judicious use of pam localuser, a system
that uses LDAP in NSS, will still need to timeout if the LDAP server is un-
available, and will crash if the client software contains a serious bug. This is
because, after authenticating, an application that wishes to assume the full Unix
credentials of the authenticated user must call initgroups(3) to initialise the
supplementary group access list. initgroups(3) queries each back-end config-
ured in NSS for a list of supplementary groups that contain the user.

This violates the policy stated in §2.2. However, this particular violation is
very close to unavoidable.

4.3 Pretty Baroque Stuff in Square Brackets

The square brackets configuration notation, while perhaps a necessary evil in
some circumstances, seems to promote configurations that are convenient but
not necessarily good.

5 Workarounds and Solutions

5.1 pam unix

There are two ways of making pam unix more usable.

5.1.1 Split pam unix

Recognise that at the end of the day pam unix really knows about two different
types of users: locally defined (/etc/{passwd,shadow}) and remotely defined
(NIS+). Split pam unix into pam files and pam nisplus, leaving two much
simpler modules. This would help to make PAM more pluggable.

5.1.2 Further Complicate pam unix

There are two options here:

• Add a localfiles option to pam unix. When activated, this would make
pam unix check for the desired user in /etc/passwd at key points in its
logic and return PAM USER UNKNOWN if the user can’t be found.

5 Workarounds and Solutions 8

• Make pam unix able to cope with additional types of back-ends that may
be configured in NSS. SuSE Linux’s pam unix2 takes this approach by
using other modules like pam ldap.

Further complicating pam unix seems like a mistake, since some of its current
problems stem from its complexity.

5.2 initgroups(3)

As noted in §4.2, PAM isn’t responsible for setting up the supplementary group
access list. PAM also isn’t responsible for setting up the the userid or primary
primary group membership. In general, PAM is not responsible for establishing
a user’s operating system credentials on behalf of an application. This is left
to the application, using whatever means the operating system provides. This
means that any application that wishes to establish Unix-like credentials must
call functions like setgid(2), initgroups(3) and setuid(2) using informa-
tion retrieved via NSS. NetBSD at least makes all of this easy by bundling all of
these calls into a function called setusercontext(3) although, since this func-
tion is still called by the application, it still doesn’t help to make credentials
establishment any more pluggable.

The pam group module allows an application to set extra groups via the
pam sm setcred function. Other modules such as pam krb use this function to
set other back-end-specific credentials. However, pam sm setcred should not be
used to set the basic operating system credentials.

Why don’t PAM modules set operating system credentials, especially given
the presence of pam sm setcred? The original PAM RFC [2] doesn’t make
this clear, but makes vague references to GSS-API — although GSS-API is a
client/server authentication mechanism and clearly doesn’t perform a creden-
tials establishment role on current platforms that use PAM. The example code
in the appendices of the PAM RFC performs setgid(2), initgroups(3) and
setuid(2) calls.

On 1997-03-03, Andrew Morgan wrote on pamlist [4]:

Credentials include things like (Kerberos) tickets. The natural ex-
tension of this is to make the setuid and initgroups calls part of this
scheme, however Sun have ruled that these two things are actually
in the domain of the application code.

Therefore, it looks to have been a decision made by Sun, the inventors of PAM.
This decision has been regularly questioned on pamlist [4], but for now, it
remains part of the ‘standard’.

On 2002-06-27, Norbert Klasen suggested [5] the following workaround for
the initgroups(3) problem when it involves nss ldap:

If local (system) users need not be members of groups held in ldap,
one might introduce a “nss min uid” option [. . .] For example, if
uid<100 then nss ldap would skip the group lookup in ldap.

However, this was rejected by Luke Howard, author of pam ldap and nss ldap,
who explained that initgroups(3) takes a username, not a uid as its argument,

6 Conclusions 9

so it would still need to lookup the uid in LDAP.5

Workarounds aside, I think Sam Hartman, the Debian GNU/Linux PAM
maintainer, summed up the situation quite well in his 2002-05-14 post to the
PAM mailing list [4]:

Long term, I think having PAM evolve to handle credentials es-
tablishment would be a net good; [. . .]

Of course when you take things to their logical conclusion, PAM
would be responsible both for the setuid call and initgroups; I think
doing one without the other would be wrong.

Getting to that ideal world would be very difficult; I think the
PAM upstream, libc upstream and application writers would all dis-
agree with us. We’d also need to think carefully about the API and
potentially change things and better define things such that PAM
could actually be responsible for user credential management. But
hey if anyone ever wants to fight that battle, I’m certainly interested
in helping.

Epilogue

Well you should see Polythene Pam
She’s so good-looking but she looks like a man
Well you should see her in drag dressed in her polythene bag
Yes, you should see Polythene Pam
Yeah, yeah, yeah. . .

Get a dose of her in jackboots and kilt
She’s killer-diller when she’s dressed to the hilt
She’s the kind of a girl that makes the “News of the World”
Yes, you could say she was attractively built
Yeah, yeah, yeah. . .— Lennon/McCartney (c© 1969 Northern Songs)

6 Conclusions

Despite the title of this paper, PAM hasn’t changed very much, apart from that
‘pretty baroque stuff in square brackets’. However, the world that PAM lives
in has changed quite a bit, placing more varied demands on PAM. PAM has
started to look a little left behind and dated. The biggest improvement would
be to somehow integrate credentials establishment into PAM, so that too could
be pluggable. It might be time for PAM to put away the polythene bag and try
on the jackboots and kilt. . .

5 I must respond to Luke and ask whether the initgroups(3) implementation in nss ldap

would really go directly to LDAP to lookup the the uid for the given username . Surely the
username should be looked up using getpwnam(3), but perhaps that isn’t allowed inside the
implementation of another NSS function?

7 Thanks... 10

7 Thanks...

Many thanks to:

• Sam Hartman and Steve Langasek for useful discussions on pam-list [4].

• Stephen Rothwell and David Gibson for useful discussions about PAM,
agreeing with some of the things I said and proofreading drafts of this
paper.

• Melynda McDonald for being there while I wrote yet another paper.

References

[1] Vipin Samar and Charlie Lai.
Making Login Services Independent of Authentication Technologies.
Sunsoft, Inc.. An earlier version of this paper was presented at the 3rd ACM
Conference on Computer and Communications Security, March, 1996.

[2] V. Samar and R. Schemers.
Unified Login with Pluggable Authentication Modules (PAM).
Open Software Foundation, Request For Comments: 86.0, October 1995.
http://www.opengroup.org/tech/rfc/rfc86.0.html

[3] Sun Microsystems.
Network Information Service Plus(NIS+): An Enterprise Naming Service.
1992.
http://wwws.sun.com/software/whitepapers/wp-nisplus/
http://www.nrao.edu/computing/sol2/NISPlus-Admin-WP.ps.

[4] PAM mailing list <pam-list@redhat.com>. Archived at
<https://listman.redhat.com/mailman/private/pam-list/> (list
subscribers only).

[5] pam ldap mailing list <pamldap@padl.com>. Archived at
<http://www.netsys.com/pamldap/>.

